Math 53: Multivariable Calculus

Sections 102, 103

Worksheet for 2020-04-27

Conceptual Review

 $d\vec{S} = \pm \vec{r}_{\mu} \times \vec{r}_{\nu}$ and

Question 1. When computing the flux of a vector field through a surface $\mathbf{r}(u, v)$, how might you decide whether to use $\mathbf{r}_u \times \mathbf{r}_v$ or $\mathbf{r}_v \times \mathbf{r}_u$? (How are these vectors related?) $\vec{r}_u \times \vec{r}_v = -\vec{r}_v \times \vec{r}_u$

Compute one of them, say
$$\vec{r}_{n} \times \vec{r}_{v}$$
, plug in an easy choice of n, v , and see if it points in
the correct direction. If yes, great! If not, take $\vec{r}_{v} \times \vec{r}_{n}$ instead, which is just $-\vec{r}_{v} \times \vec{r}_{v}$
(no need to take cross product again).

Problems

Problem 1. Let S be the surface
$$z = x^2 + 4y^2 - 4$$
, $z \le 0$ oriented downwards (i.e. negatively). Compute $\iint_{S} (\nabla \times F) \cdot dS$ where
 $F = (y \log_2(x^2 + 4y^2 + z^2) + 3x^2y^2 \cos(x^2))i + (-3x + 2y \sin(x^3))j + (e^{yz} \arctan(y^{x^2+1}))k.$
elliptic parabolid
(D) u/se Stokes! A rewrite integral over C
(what's the correct orientation of C?)
(what's the equators) of C to simplify the integrand
(Local Stokes!) (what's the integral, perhaps by another application of
Stokes!//Green's Then:
C: $\begin{cases} x^2 + 4y^2 = 4\\ \pm = 0 \end{cases}$
($x \neq y^2 = 4$
 $z = 0$
($x \neq y^2 = 4$
 $z = 0$
($x \neq y^2 = 4$
 $z = 0$
($y \neq y^2 + 3x^2y^2 \cos(x^2)$), $-3x + 2y \sin(x^2)$, men? $d\vec{r}$
($y = \int_{C} (2y + 3x^2y^2 \cos(x^2)), -3x + 2y \sin(x^2)$, men? $d\vec{r}$
 $f = x \text{ proph}(1 \text{ (ide S)}), \text{ the two selections})$
($y = \int_{C} (2y + 3x^2y^2 \cos(x^2)), -3x + 2y \sin(x^2), \text{ men}$? $d\vec{r}$
 $f = x \text{ proph}(1 \text{ correct} is 0, so$
 $z \text{ compared of } F \text{ is inclument.}$

Problem 3. Use the divergence theorem to compute the volume enclosed by the surface obtained by rotating the curve $\langle \cos t, 0, \sin(2t) \rangle (-\pi/2 \le t \le \pi/2)$ around the *z*-axis.

First need to parametrize.
First need to parametrize.
(cosin, 0, cin (2n))
- Th suis T/2 O Siv S 2TI
F (h, N) = (cosin cosin, cosin sinn, sin (2n))
Nolume:
H I dN =
H F · dS as (ang 23 div F =).
Have ananychoices:
By RHR: shall table
$$\vec{\tau}_v \vec{\tau}_u$$
. (Alterechaly, just take atter one - if your
final answer is imported then there are as a computing
(2 cosin cosin).
(2 cosin